Cryptography in Quadratic Function Fields
نویسنده
چکیده
We describe several cryptographic schemes in quadratic function fields of odd characteristic. In both the real and the imaginary representation of such a field, we present a Diffie-Hellman-like key exchange protocol as well as a public-key cryptosystem and a signature scheme of ElGamal type. Several of these schemes are improvements of systems previously found in the literature, while others are new. All systems are based on an appropriate discrete logarithm problem. In the imaginary setting, this is the discrete logarithm problem in the ideal class group of the field, or equivalently, in the Jacobian of the curve defining the function field. In the real case, the problem in question is the task of computing distances in the set of reduced principal ideals, which is a monoid under a suitable operation. Currently, the best general algorithms for solving both discrete logarithm problems are exponential (subexponential only in fields of high genus), resulting in a possibly higher level of security than that of conventional discrete logarithm based schemes.
منابع مشابه
Cryptography in Real Quadratic Congruence Function Fields
The Diffie-Hellman key exchange protocol as well as the ElGamal signature scheme are based on exponentiation modulo p for some prime p. Thus the security of these schemes is strongly tied to the difficulty of computing discrete logarithms in the finite field Fp. The Diffie-Hellman protocol has been generalized to other finite groups arising in number theory, and even to the sets of reduced prin...
متن کاملKey-Exchange in Real Quadratic Congruence Function Fields
We show how the theory of real quadratic congruence function fields can be used to produce a secure key distribution protocol. The technique is similar to that advocated by Diffie and Hellman in 1976, but instead of making use of a group for its underlying structure, makes use of a structure which is “almost” a group. The method is an extension of the recent ideas of Scheidler, Buchmann and Wil...
متن کاملExplicit Infrastructure for Real Quadratic Function Fields and Real Hyperelliptic Curves
In 1989, Koblitz first proposed the Jacobian of a an imaginary hyperelliptic curve for use in public-key cryptographic protocols. This concept is a generalization of elliptic curve cryptography. It can be used with the same assumed key-per-bit strength for small genus. More recently, real hyperelliptic curves of small genus have been introduced as another source for cryptographic protocols. The...
متن کاملComputing discrete logarithms in real quadratic congruence function fields of large genus
The discrete logarithm problem in various finite abelian groups is the basis for some well known public key cryptosystems. Recently, real quadratic congruence function fields were used to construct a public key distribution system. The security of this public key system is based on the difficulty of a discrete logarithm problem in these fields. In this paper, we present a probabilistic algorith...
متن کاملDiscrete Logarithm Based Cryptosystems in Quadratic Function Fields of Characteristic 2
We present a key exchange scheme similar to that of Diie and Hellman using the infrastructure of quadratic function elds of even characteristic. This is a modiication of the results of Scheidler, Stein and Williams who used quadratic function elds of odd characteristic. We also extend these results to give a digital signature scheme similar to that of ElGamal. These schemes are possible in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 22 شماره
صفحات -
تاریخ انتشار 2001